Copied to
clipboard

?

G = C22×C4.Q8order 128 = 27

Direct product of C22 and C4.Q8

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C22×C4.Q8, C24.191D4, C23.48SD16, C89(C22×C4), (C22×C8)⋊18C4, C4.1(C22×Q8), (C23×C8).21C2, C4.45(C23×C4), C4⋊C4.346C23, C23.85(C4⋊C4), (C2×C4).183C24, (C2×C8).587C23, (C22×C4).603D4, C23.838(C2×D4), (C22×C4).101Q8, C2.3(C22×SD16), C22.80(C2×SD16), (C23×C4).694C22, (C22×C8).564C22, C22.130(C22×D4), (C22×C4).1504C23, (C2×C8)⋊38(C2×C4), C4.63(C2×C4⋊C4), (C2×C4).841(C2×D4), C22.74(C2×C4⋊C4), C2.22(C22×C4⋊C4), (C2×C4).237(C2×Q8), (C2×C4).149(C4⋊C4), (C22×C4⋊C4).42C2, (C2×C4⋊C4).901C22, (C22×C4).494(C2×C4), (C2×C4).571(C22×C4), SmallGroup(128,1639)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C22×C4.Q8
C1C2C22C2×C4C22×C4C23×C4C23×C8 — C22×C4.Q8
C1C2C4 — C22×C4.Q8
C1C24C23×C4 — C22×C4.Q8
C1C2C2C2×C4 — C22×C4.Q8

Subgroups: 460 in 300 conjugacy classes, 220 normal (10 characteristic)
C1, C2, C2 [×14], C4 [×2], C4 [×6], C4 [×8], C22, C22 [×34], C8 [×8], C2×C4, C2×C4 [×27], C2×C4 [×32], C23 [×15], C4⋊C4 [×8], C4⋊C4 [×12], C2×C8 [×28], C22×C4 [×14], C22×C4 [×20], C24, C4.Q8 [×16], C2×C4⋊C4 [×12], C2×C4⋊C4 [×6], C22×C8 [×14], C23×C4, C23×C4 [×2], C2×C4.Q8 [×12], C22×C4⋊C4 [×2], C23×C8, C22×C4.Q8

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×4], Q8 [×4], C23 [×15], C4⋊C4 [×16], SD16 [×8], C22×C4 [×14], C2×D4 [×6], C2×Q8 [×6], C24, C4.Q8 [×16], C2×C4⋊C4 [×12], C2×SD16 [×12], C23×C4, C22×D4, C22×Q8, C2×C4.Q8 [×12], C22×C4⋊C4, C22×SD16 [×2], C22×C4.Q8

Generators and relations
 G = < a,b,c,d,e | a2=b2=c4=1, d4=c2, e2=c-1d2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d3 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 41)(25 58)(26 59)(27 60)(28 61)(29 62)(30 63)(31 64)(32 57)(33 87)(34 88)(35 81)(36 82)(37 83)(38 84)(39 85)(40 86)(49 69)(50 70)(51 71)(52 72)(53 65)(54 66)(55 67)(56 68)(73 95)(74 96)(75 89)(76 90)(77 91)(78 92)(79 93)(80 94)(97 114)(98 115)(99 116)(100 117)(101 118)(102 119)(103 120)(104 113)(105 126)(106 127)(107 128)(108 121)(109 122)(110 123)(111 124)(112 125)
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 17)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(25 40)(26 33)(27 34)(28 35)(29 36)(30 37)(31 38)(32 39)(49 123)(50 124)(51 125)(52 126)(53 127)(54 128)(55 121)(56 122)(57 85)(58 86)(59 87)(60 88)(61 81)(62 82)(63 83)(64 84)(65 106)(66 107)(67 108)(68 109)(69 110)(70 111)(71 112)(72 105)(73 117)(74 118)(75 119)(76 120)(77 113)(78 114)(79 115)(80 116)(89 102)(90 103)(91 104)(92 97)(93 98)(94 99)(95 100)(96 101)
(1 57 5 61)(2 58 6 62)(3 59 7 63)(4 60 8 64)(9 30 13 26)(10 31 14 27)(11 32 15 28)(12 25 16 29)(17 84 21 88)(18 85 22 81)(19 86 23 82)(20 87 24 83)(33 41 37 45)(34 42 38 46)(35 43 39 47)(36 44 40 48)(49 104 53 100)(50 97 54 101)(51 98 55 102)(52 99 56 103)(65 117 69 113)(66 118 70 114)(67 119 71 115)(68 120 72 116)(73 110 77 106)(74 111 78 107)(75 112 79 108)(76 105 80 109)(89 125 93 121)(90 126 94 122)(91 127 95 123)(92 128 96 124)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 117 63 67)(2 120 64 70)(3 115 57 65)(4 118 58 68)(5 113 59 71)(6 116 60 66)(7 119 61 69)(8 114 62 72)(9 102 28 49)(10 97 29 52)(11 100 30 55)(12 103 31 50)(13 98 32 53)(14 101 25 56)(15 104 26 51)(16 99 27 54)(17 78 82 105)(18 73 83 108)(19 76 84 111)(20 79 85 106)(21 74 86 109)(22 77 87 112)(23 80 88 107)(24 75 81 110)(33 125 47 91)(34 128 48 94)(35 123 41 89)(36 126 42 92)(37 121 43 95)(38 124 44 90)(39 127 45 93)(40 122 46 96)

G:=sub<Sym(128)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,41)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(33,87)(34,88)(35,81)(36,82)(37,83)(38,84)(39,85)(40,86)(49,69)(50,70)(51,71)(52,72)(53,65)(54,66)(55,67)(56,68)(73,95)(74,96)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119)(103,120)(104,113)(105,126)(106,127)(107,128)(108,121)(109,122)(110,123)(111,124)(112,125), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,40)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,121)(56,122)(57,85)(58,86)(59,87)(60,88)(61,81)(62,82)(63,83)(64,84)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,105)(73,117)(74,118)(75,119)(76,120)(77,113)(78,114)(79,115)(80,116)(89,102)(90,103)(91,104)(92,97)(93,98)(94,99)(95,100)(96,101), (1,57,5,61)(2,58,6,62)(3,59,7,63)(4,60,8,64)(9,30,13,26)(10,31,14,27)(11,32,15,28)(12,25,16,29)(17,84,21,88)(18,85,22,81)(19,86,23,82)(20,87,24,83)(33,41,37,45)(34,42,38,46)(35,43,39,47)(36,44,40,48)(49,104,53,100)(50,97,54,101)(51,98,55,102)(52,99,56,103)(65,117,69,113)(66,118,70,114)(67,119,71,115)(68,120,72,116)(73,110,77,106)(74,111,78,107)(75,112,79,108)(76,105,80,109)(89,125,93,121)(90,126,94,122)(91,127,95,123)(92,128,96,124), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,117,63,67)(2,120,64,70)(3,115,57,65)(4,118,58,68)(5,113,59,71)(6,116,60,66)(7,119,61,69)(8,114,62,72)(9,102,28,49)(10,97,29,52)(11,100,30,55)(12,103,31,50)(13,98,32,53)(14,101,25,56)(15,104,26,51)(16,99,27,54)(17,78,82,105)(18,73,83,108)(19,76,84,111)(20,79,85,106)(21,74,86,109)(22,77,87,112)(23,80,88,107)(24,75,81,110)(33,125,47,91)(34,128,48,94)(35,123,41,89)(36,126,42,92)(37,121,43,95)(38,124,44,90)(39,127,45,93)(40,122,46,96)>;

G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,41)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(33,87)(34,88)(35,81)(36,82)(37,83)(38,84)(39,85)(40,86)(49,69)(50,70)(51,71)(52,72)(53,65)(54,66)(55,67)(56,68)(73,95)(74,96)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119)(103,120)(104,113)(105,126)(106,127)(107,128)(108,121)(109,122)(110,123)(111,124)(112,125), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,40)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,121)(56,122)(57,85)(58,86)(59,87)(60,88)(61,81)(62,82)(63,83)(64,84)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,105)(73,117)(74,118)(75,119)(76,120)(77,113)(78,114)(79,115)(80,116)(89,102)(90,103)(91,104)(92,97)(93,98)(94,99)(95,100)(96,101), (1,57,5,61)(2,58,6,62)(3,59,7,63)(4,60,8,64)(9,30,13,26)(10,31,14,27)(11,32,15,28)(12,25,16,29)(17,84,21,88)(18,85,22,81)(19,86,23,82)(20,87,24,83)(33,41,37,45)(34,42,38,46)(35,43,39,47)(36,44,40,48)(49,104,53,100)(50,97,54,101)(51,98,55,102)(52,99,56,103)(65,117,69,113)(66,118,70,114)(67,119,71,115)(68,120,72,116)(73,110,77,106)(74,111,78,107)(75,112,79,108)(76,105,80,109)(89,125,93,121)(90,126,94,122)(91,127,95,123)(92,128,96,124), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,117,63,67)(2,120,64,70)(3,115,57,65)(4,118,58,68)(5,113,59,71)(6,116,60,66)(7,119,61,69)(8,114,62,72)(9,102,28,49)(10,97,29,52)(11,100,30,55)(12,103,31,50)(13,98,32,53)(14,101,25,56)(15,104,26,51)(16,99,27,54)(17,78,82,105)(18,73,83,108)(19,76,84,111)(20,79,85,106)(21,74,86,109)(22,77,87,112)(23,80,88,107)(24,75,81,110)(33,125,47,91)(34,128,48,94)(35,123,41,89)(36,126,42,92)(37,121,43,95)(38,124,44,90)(39,127,45,93)(40,122,46,96) );

G=PermutationGroup([(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,41),(25,58),(26,59),(27,60),(28,61),(29,62),(30,63),(31,64),(32,57),(33,87),(34,88),(35,81),(36,82),(37,83),(38,84),(39,85),(40,86),(49,69),(50,70),(51,71),(52,72),(53,65),(54,66),(55,67),(56,68),(73,95),(74,96),(75,89),(76,90),(77,91),(78,92),(79,93),(80,94),(97,114),(98,115),(99,116),(100,117),(101,118),(102,119),(103,120),(104,113),(105,126),(106,127),(107,128),(108,121),(109,122),(110,123),(111,124),(112,125)], [(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,17),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(25,40),(26,33),(27,34),(28,35),(29,36),(30,37),(31,38),(32,39),(49,123),(50,124),(51,125),(52,126),(53,127),(54,128),(55,121),(56,122),(57,85),(58,86),(59,87),(60,88),(61,81),(62,82),(63,83),(64,84),(65,106),(66,107),(67,108),(68,109),(69,110),(70,111),(71,112),(72,105),(73,117),(74,118),(75,119),(76,120),(77,113),(78,114),(79,115),(80,116),(89,102),(90,103),(91,104),(92,97),(93,98),(94,99),(95,100),(96,101)], [(1,57,5,61),(2,58,6,62),(3,59,7,63),(4,60,8,64),(9,30,13,26),(10,31,14,27),(11,32,15,28),(12,25,16,29),(17,84,21,88),(18,85,22,81),(19,86,23,82),(20,87,24,83),(33,41,37,45),(34,42,38,46),(35,43,39,47),(36,44,40,48),(49,104,53,100),(50,97,54,101),(51,98,55,102),(52,99,56,103),(65,117,69,113),(66,118,70,114),(67,119,71,115),(68,120,72,116),(73,110,77,106),(74,111,78,107),(75,112,79,108),(76,105,80,109),(89,125,93,121),(90,126,94,122),(91,127,95,123),(92,128,96,124)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,117,63,67),(2,120,64,70),(3,115,57,65),(4,118,58,68),(5,113,59,71),(6,116,60,66),(7,119,61,69),(8,114,62,72),(9,102,28,49),(10,97,29,52),(11,100,30,55),(12,103,31,50),(13,98,32,53),(14,101,25,56),(15,104,26,51),(16,99,27,54),(17,78,82,105),(18,73,83,108),(19,76,84,111),(20,79,85,106),(21,74,86,109),(22,77,87,112),(23,80,88,107),(24,75,81,110),(33,125,47,91),(34,128,48,94),(35,123,41,89),(36,126,42,92),(37,121,43,95),(38,124,44,90),(39,127,45,93),(40,122,46,96)])

Matrix representation G ⊆ GL6(𝔽17)

1600000
010000
0016000
0001600
000010
000001
,
100000
0160000
0016000
0001600
000010
000001
,
100000
0160000
0016000
0001600
0000016
000010
,
1600000
0160000
000100
0016000
0000125
00001212
,
100000
0130000
006400
0041100
00001212
0000125

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,5,12],[1,0,0,0,0,0,0,13,0,0,0,0,0,0,6,4,0,0,0,0,4,11,0,0,0,0,0,0,12,12,0,0,0,0,12,5] >;

56 conjugacy classes

class 1 2A···2O4A···4H4I···4X8A···8P
order12···24···44···48···8
size11···12···24···42···2

56 irreducible representations

dim111112222
type+++++-+
imageC1C2C2C2C4D4Q8D4SD16
kernelC22×C4.Q8C2×C4.Q8C22×C4⋊C4C23×C8C22×C8C22×C4C22×C4C24C23
# reps112211634116

In GAP, Magma, Sage, TeX

C_2^2\times C_4.Q_8
% in TeX

G:=Group("C2^2xC4.Q8");
// GroupNames label

G:=SmallGroup(128,1639);
// by ID

G=gap.SmallGroup(128,1639);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,2804,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=1,d^4=c^2,e^2=c^-1*d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽